4.8 Review

Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 16, 页码 9769-9790

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c01666

关键词

-

资金

  1. NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment [ERC-1449500]

向作者/读者索取更多资源

Development of novel adsorbents often neglects the competitive adsorption between co-occurring oxo-anions, over- estimating realistic pollutant removal potentials, and overlooking the need to improve selectivity of materials. This critical review focuses on adsorptive competition between commonly co-occurring oxo-anions in water and mechanistic approaches for the design and development of selective adsorbents. Six target oxo-anion pollutants (arsenate, arsenite, selenate, selenite, chromate, and perchlorate) were selected for study. Five competing co-occurring oxo-anions (phosphate, sulfate, bicar- bonate, silicate, and nitrate) were selected due to their potential to compete with target oxo-anions for sorption sites resulting in decreased removal of the target oxo-anions. First, a comprehensive review of competition between target and competitor oxo-anions to sorb on commonly used, nonselective, metal (hydr)oxide materials is presented, and the strength of competition between each target and competitive oxo-anion pair is classified. This is followed by a critical discussion of the different equations and models used to quantify selectivity. Next, four mechanisms that have been successfully utilized in the development of selective adsorbents are reviewed: variation in surface complexation, Lewis acid/base hardness, steric hindrance, and electrostatic interactions. For each mechanism, the oxo-anions, both target and competitors, are ranked in terms of adsorptive attraction and technologies that exploit this mechanism are reviewed. Third, given the significant effort to evaluate these systems empirically, the potential to use computational quantum techniques, such as density functional theory (DFT), for modeling and prediction is explored. Finally, areas within the field of selective adsorption requiring further research are detailed with guidance on priorities for screening and defining selective adsorbents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据