4.8 Article

Dispersion Normalized PMF Provides Insights into the Significant Changes in Source Contributions to PM2.5 after the COVID-19 Outbreak

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 54, 期 16, 页码 9917-9927

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.0c02776

关键词

-

资金

  1. National Key R&D Program of China [2016YFC0208505]
  2. Tianjin Science and Technology Program [18ZXSZSF00160]

向作者/读者索取更多资源

Factor analysis utilizes the covariance of compositional variables to separate sources of ambient pollutants like particulate matter (PM). However, meteorology causes concentration variations in addition to emission rate changes. Conventional positive matrix factorization (PMF) loses information from the data because of these dilution variations. By incorporating the ventilation coefficient, dispersion normalized PMF (DN-PMF) reduces the dilution effects. DN-PMF was applied to hourly speciated particulate composition data from a field campaign that included the start of the COVID-19 outbreak. DN-PMF sharpened the morning coal combustion and rush hour traffic peaks and lowered the daytime soil, aged sea salt, and waste incinerator contributions that better reflect the actual emissions. These results identified significant changes in source contributions after the COVID-19 outbreak in China. During this pandemic, secondary inorganic aerosol became the predominant PM2.5 source representing 50.5% of the mean mass. Fireworks and residential burning (32.0%), primary coal combustion emissions (13.3%), primary traffic emissions (2.1%), soil and aged sea salt (1.2%), and incinerator (0.9%) represent the other contributors. Traffic decreased dramatically (70%) compared to other sources. Soil and aged sea salt also decreased by 68%, likely from decreased traffic.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据