4.7 Article

Diversity of bacteria and archaea in the groundwater contaminated by chlorinated solvents undergoing natural attenuation

期刊

ENVIRONMENTAL RESEARCH
卷 185, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.envres.2020.109457

关键词

Chlorinated solvents; Groundwater; Microbial ecology; Dichlorination; Illumina sequencing

资金

  1. National Natural Science Foundation of China [41977122, 21577007, 31500083, 31601642]
  2. National Key Research and Development Program of China [2017YFD0800102]
  3. Strategic Priority Research Program of the Chinese Academy of Sciences [XDA23010400]

向作者/读者索取更多资源

Chlorinated solvents (CS)-contaminated groundwater poses serious risks to the environment and public health. Microorganisms play a vital role in efficient remediation of CS. In this study, the microbial community (bacterial and archaeal) composition of three CS-contaminated groundwater wells located at an abandoned chemical factory which covers three orders of magnitude in concentration (0.02-16.15 mg/L) were investigated via 16S rRNA gene high-throughput sequencing. The results indicated that Proteobacteria and Thaumarchaeota were the most abundant bacterial and archaeal groups at the phylum level in groundwater, respectively. The major bacterial genera (Flavobacterium sp., Mycobacterium sp. and unclassified Parcubacteria taxa, etc.) and archaeal genera (Thaumarchaeota Group C3, Miscellaneous Crenarchaeotic Group and Miscellaneous Euryarchaeotic Group, etc.) might be involved in the dechlorination processes. In addition, Pearson's correlation analyses showed that alpha diversity of the bacterial community was not significantly correlated with CS concentration, while alpha diversity of archaeal community greatly decreased with the increased contamination of CS. Moreover, partial Mantel test indicated that oxidation-reduction potential, dissolved oxygen, temperature and methane concentration were major drivers of bacterial and archaeal community composition, whereas CS concentration had no significant impact, indicating that both indigenous bacterial and archaeal community compositions are capable of withstanding elevated CS contamination. This study improves our understanding of how the natural microbial community responds to high CS-contaminated groundwater.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据