4.7 Article

Preparation of 2D nitrogen-doped magnetic Fe3C/C by in-situ self-assembled double-template method for enhanced removal of Cr(VI)

期刊

ENVIRONMENTAL POLLUTION
卷 263, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.114374

关键词

Cr(VI) removal; Iron carbide; Nitrogen doped; Magnetic porous carbon; Potassium humate

资金

  1. National Natural Science Foundation of China [U1503391, 21836002]
  2. National Key Research and Development Program of China [2019YFA0210400]
  3. Guangdong Innovative and Entrepreneurial Research Team Program [2016ZT06N569]

向作者/读者索取更多资源

Porous carbon, which can be functionalized, is considered as a potential carbon material. Herein, two-dimensional (2D) nitrogen-doped magnetic Fe3C/C (NMC) was prepared by a simple carbonization method using potassium humate (HA-K) as raw material. Remarkably, two templates, g-C3N4 and KCl, were formed in situ during the carbonization process, which provide the necessary conditions for the formation of 2D NMC. The NMC was comprehensively studied by different characterization methods. The results show that NMC has a large surface area and mesoporous structure. The prepared NMC-0.50 was used to test the removal performance of Cr(VI). The effects of pH value, coexisting ions and time on Cr(VI) removal performance were investigated, and the adsorption kinetics, isotherm and thermodynamics were studied. The results showed that the adsorption isotherm model of NMC-50 accorded with the Langmuir model, and the maximum adsorption capacity was 423.73 mg g(-1). The reaction mechanism of Cr(VI) is adsorption and redox reaction. In addition, NMC-0.50 exhibit high selectivity, separability and regeneration performance. A convenient means for the synthesis of NMC was designed in this work, and demonstrate that NMC has practical value as an adsorbent. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据