4.7 Article

The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis

期刊

ENVIRONMENTAL POLLUTION
卷 263, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2020.114555

关键词

Shell; Ocean acidification; Salinity; Biomineralization; Climate change

资金

  1. FONDECYT [3170156, 1161420]
  2. FPI fellowship [PRE2028-085419]
  3. Project Center for the study of multiple-drivers on marine socio-ecological systems (MUSELS) from the Ministerio de Economia, Fomento y Turismo [MINECON NC 120086]
  4. Universidad de Granada [UCE PP 662016.05]
  5. Center FONDAP-IDEAL [15150003]
  6. [CGL2015-64683-P]
  7. [RNM-179]

向作者/读者索取更多资源

Coastal ecosystems influenced by river discharges are subjected to important environmental changes. Understanding how marine biota cope with its environment is relevant in predicting the responses to future conditions imposed by climate change. To date, a large number of studies have addressed the role of pH on shell and biomineralization properties on multiple calcifying species; however the role of salinity in combination with other stressors has been poorly studied. In particular, the edible mussel Mytilus chilensis, an important marine resource of the Chilean coasts, inhabits estuarine areas which show high natural variability in terms of pH and salinity. Here, we studied how M. chilensis shell peri-ostracum, shell organic matrix and crystal orientation are affected by different pH (8.1 and 7.7) and salinity conditions (30, 25 and 20 psu), isolated and in combination, at different time intervals. Our results show differences in the plasticity of the different biomineralogical properties studied during the experiment under the different pH and salinity treatments. While the periostracum thickness and the total shell organic matter were not affected by pH and salinity, the periostracum organic composition did. Higher amounts of polysaccharides were observed under low pH conditions after 20 days of experiment, while after 60 days, low salinity was responsible for the decrease of the polysaccharides and proteins in the periostracum. Low salinity also produced a major disorder in crystal organization at the outer shell surface. Finally, total shell weight was only affected by low pH conditions under lower salinity conditions (20 psu). From the results, in the majority of the shell properties observed we did not observe any combined effect of pH and salinity. Also, we detected that the magnitude of the impacts of salinity and pH are variable and time-dependent. This would be suggesting some level of acclimatization of M. chilensis to lower pH and salinity conditions. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据