4.8 Article

Simulating and predicting the flux change of reverse osmosis membranes over time during wastewater reclamation caused by organic fouling

期刊

ENVIRONMENT INTERNATIONAL
卷 140, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.envint.2020.105744

关键词

Reverse osmosis; Membrane fouling; Organic fouling; Intermediate blocking model; Time-course model

资金

  1. Key Program of the National Natural Science Foundation of China [51738005]
  2. Science and Technology Plan Project of Beijing [Z181100005518001]
  3. Kurita (Japan) Water Industries Ltd.

向作者/读者索取更多资源

During the operation of the RO system, it's significant to predict the flux change over time. Previous research conducted detailed exploration on the dynamics of RO membrane fouling, and provided a solid database for modelling. In this study, a modified intermediate blocking model with two parameters was proposed to describe the flux change of RO membranes under a huge variety of conditions. Raw data reported by over 20 research groups from 11 different countries was used to validate the feasibility of this model. It proved applicable to describe the flux change of RO membranes fouled by pure organic matter or mixture and tertiary treated wastewater. In order to reveal the relationship between model parameters and foulant concentrations, RO membrane fouling behaviors of typical foulants (sodium alginate (SA), bovine serum albumin (BSA) and mixture) were further investigated. We found that the change of model parameters with SA concentrations was in accordance with Langmuir adsorption isotherm model. Therefore, the model parameters could be calculated by SA concentrations under certain optional conditions, and then the flux change could be predicted by this model. In this way, a novel time-course model was established, which could predict the flux change of RO membranes over time only with SA concentrations. Besides, the synergic effect between SA and BSA on RO membrane fouling was directly quantified.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据