4.7 Article

Fracture in random quasibrittle media: I. Discrete mesoscale simulations of load capacity and fracture process zone

期刊

ENGINEERING FRACTURE MECHANICS
卷 235, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.engfracmech.2020.107160

关键词

Discrete model; Mesoscale; Concrete; Probability; Random field; Fracture; Fracture process zone

资金

  1. Czech Science Foundation [GA19-12197S, GC19-06684J]

向作者/读者索取更多资源

Numerical simulations of concrete fracture performed with a probabilistic mesoscale discrete model are presented. The model represents a substantial part of material randomness by assigning random locations to the largest aggregates. The remaining part of randomness is introduced by causing material parameters to fluctuate randomly via a homogeneous random field. An extensive numerical study performed with the model considers prisms loaded in uniaxial tension with both fixed and rotating platens, and also beams with and without a notch loaded in three point bending. The results show the nontrivial effect of (i) autocorrelation length and (ii) variance of the random field on the fracture behavior of the model. Statistics of the peak load are presented as well as the size and shape of the fracture process zone at the moment when the maximum load is attained. Local averaging within the fracture process zone and weakest-link are identified as underlying mechanisms explaining the reported results. The companion paper, Part II (Vorechovsky and Elias, 2020), introduces an analytical model capable of predicting the distribution of the peak load obtained with the probabilistic discrete model via the simple estimation of extremes of a random field obtained as moving average of local strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据