4.7 Article

Characteristics of ash and slag from four biomass-fired power plants: Ash/slag ratio, unburned carbon, leaching of major and trace elements

期刊

ENERGY CONVERSION AND MANAGEMENT
卷 214, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2020.112897

关键词

Biomass-fired grate boiler; Ash/slag ratio; Leaching; Trace element; Unburned carbon

资金

  1. National Natural Science Foundation of China [51761125012]
  2. Natural Science Foundation of Xinjiang Province [2017D01B41, 2017D01A69]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

The utilization of biomass energy is attracting worldwide attention due to the worsening energy crisis and the concerns on carbon dioxide emission. However, the rapidly development of biomass-fired power plants generate enormous amount of slag and ash. At present, the main treatment method of biomass slag and ash is landfill, which not only requires high cost, but also causes a series of environmental issues. Aiming at this problem, the slag and fly ash from four biomass power plants were sampled and characterized. The major/trace element composition and leaching characteristics of slag and fly ash are analyzed, and the effect of volatile mineral in these solid residues on furnace efficiency is also evaluated. The results indicate that for biomass- fired grate furnaces, in the generated solid residues, the slag accounts 60 similar to 70% while the fly ash accounts for 30 similar to 40%. The volatile elements in slag are much lower than those in fly ash, and the unburned carbon content of fly ash is generally lower than that of slag. Due to the enrichment of volatile minerals in fly ash, instead of 815 degrees C, 550 degrees C is suggested to measure the unburned carbon content in fly ash. When the measuring temperature of unburned carbon decreases from 815 degrees C to 550 degrees C, the measured energy loss from the incomplete combustion of solid fuels decreases by one third, which affords a more reasonable evaluation on combustion efficiency. The contents of cadmium and lead in certain fly ash samples exceed the standard, however, all fly ash samples have a high leaching rate of potassium but low leaching rates of copper, zinc, cadmium, lead, chromium and arsenic. It indicates that the fly ash from biomass-fired grate furnace is suitable for producing potassium fertilizer by leaching instead of direct soil fertilization or landfill. The leaching rate of most minerals in slag is much lower than that in fly ash and the contents of heavy metals are far below the prescribed upper limit in standard, which indicates that the slag from biomass-fired grate boiler is more suitable for direct use in soil improvement due to the low contents of hazardous elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据