4.7 Article

A multiscale approach for simulation of shale gas transport in organic nanopores

期刊

ENERGY
卷 210, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118547

关键词

Shale gas transport; Multiphysical fields; Multiscale approach; Lattice Boltzmann model; Molecular simulation

资金

  1. National Natural Science Foundation of China [51706018]
  2. Fundamental Research Funds for the Central Universities [FRF-TP-19-009A3]

向作者/读者索取更多资源

Gas flow behaviors in shale are significantly complicated because of the inherent complexity and heterogeneity of shale formations. Revealing the gas transport characteristic is critical for achieving high efficiency of shale gas exploitation. In this work, a multiscale approach combined molecular simulation and lattice Boltzmann method has been proposed for investigating gas transport in shale organic nanopores. Firstly, the characteristic of adsorbed gas in shale nanopore was obtained by molecular simulation. Then, the adsorption properties were integrated to develop a lattice Boltzmann model, which can capture slippage and surface diffusion effects in shale nanopores. By employing this proposed multiscale model, the effects of pressure, temperature and pore size on shale gas adsorption and transport characteristics in organic nanopore were studied. Numerical results show pore size and pressure have great influences on gas adsorption behaviors. The gas apparent permeability tends to increase with the increment of temperature and decrease of pressure. Moreover, the influences of pore size and pressure on surface diffusion permeability were examined. Numerical results indicate the contribution of surface diffusion to overall apparent permeability tends to be enhanced in small pore and low pressure. However, this influence will be greatly weakened with the increasing pore size. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据