4.7 Article

Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression

期刊

ENERGY
卷 205, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2020.118000

关键词

Battery pack; State of charge; Data-driven; Feature selection; Gaussian process regression; Autoregressive model

资金

  1. National Natural Science Foundation of China [51875054]
  2. Chongqing Natural Science Foundation for Distinguished Young Scholars [cstc2019jcyjjq0010]
  3. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2018-05471]

向作者/读者索取更多资源

Since a battery pack consists of hundreds of cells in series and parallel, inconsistencies between cells make it difficult to create an explicit model to simulate its behaviors effectively. Therefore, the widely used and sophisticated model-based methods (such as Kalman filters) are difficult to apply to SOC (state of charge) estimation of battery packs. In this paper, a data-driven method based on Gaussian process regression (GPR) is proposed to provide a feasible solution. Its superiority includes the ability to approximate nonlinearity accurately, nonparametric modeling, and probabilistic predictions. First, a feature extraction strategy, including data preprocessing, correlation analysis, and principal component analysis, is employed to obtain a compacted input set with a high correlation with SOC. Second, the squared exponential kernel function is used, and the automatic relevance determination is applied to optimize the weights of features. Third, besides the regular GPR model, an autoregressive GPR model is also constructed to further improve estimation accuracy and confidence. The experimental results verify that the autoregressive model has better SOC estimation performance than the regular model, and its estimation error under different dynamic cycles, temperatures, aging conditions, and even extreme conditions is lower than 3.9%, and the confidence interval is also much narrower. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据