4.5 Article

Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting Utility-Scale Wind Turbine Wakes

期刊

ENERGIES
卷 13, 期 14, 页码 -

出版社

MDPI
DOI: 10.3390/en13143574

关键词

wind turbine wake; actuator disk model; actuator surface model; dynamic mode decomposition; coherent structures; wake meandering

资金

  1. NSFC Basic Science Center Program [11988102]

向作者/读者索取更多资源

The Actuator Disk (AD) model is widely used in Large-Eddy Simulations (LES) to simulate wind turbine wakes because of its computing efficiency. The capability of the AD model in predicting time-average quantities of wind tunnel-scale turbines has been assessed extensively in the literature. However, its capability in predicting wakes of utility-scale wind turbines especially for the coherent flow structures is not clear yet. In this work, we take the time-averaged statistics and Dynamic Mode Decomposition (DMD) modes computed from a well-validated Actuator Surface (AS) model as references to evaluate the capability of the AD model in predicting the wake of a 2.5 MW utility-scale wind turbine for uniform inflow and fully developed turbulent inflow conditions. For the uniform inflow cases, the predictions from the AD model are significantly different from those from the AS model for the time-averaged velocity, and the turbulence kinetic energy until nine rotor diameters (D) downstream of the turbine. For the turbulent inflow cases, on the other hand, the differences in the time-averaged quantities predicted by the AS and AD models are not significant especially at far wake locations. As for DMD modes, significant differences are observed in terms of dominant frequencies and DMD patterns for both inflows. Moreover, the effects of incoming large eddies, bluff body shear layer instability, and hub vortexes on the coherent flow structures are discussed in this paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据