4.5 Article

Evaluation of Waste Plastic Oil-Biodiesel Blends as Alternative Fuels for Diesel Engines

期刊

ENERGIES
卷 13, 期 11, 页码 -

出版社

MDPI
DOI: 10.3390/en13112823

关键词

waste plastic oil; biodiesel; castor oil; emission; diesel engine

向作者/读者索取更多资源

This study examined the use of waste plastic oil (WPO) combined with biodiesel as an alternative fuel for diesel engines, also commonly known as compression ignition engines, and focused on comparison of the basic physical and chemical properties of fuels, engine performance, combustion characteristics, and exhaust emissions. A preliminary study was conducted to determine the suitable ratio for the fuel blends in consideration of fuel lubricity and viscosity, and these results indicated that 10% biodiesel-derived from either palm oil or castor oil-in waste plastic oil was optimal. In addition, characterization of the basic properties of these fuel blends revealed that they had higher density and specific gravity and a lower flash point than diesel fuel, while the fuel heating value, viscosity, and cetane index were similar. The fuel blends, comprised of waste plastic oil with either 10% palm oil biodiesel (WPOP10) or 10% castor oil biodiesel (WPOC10), were selected for further investigation in engine tests in which diesel fuel and waste plastic oil were also included as baseline fuels. The experimental results of the performance of the engine showed that the combustion of WPO was similar to diesel fuel for all the tested engine loads and the addition of castor oil as compared to palm oil biodiesel caused a delay in the start of the combustion. Both biodiesel blends slightly improved brake thermal efficiency and smoke emissions with respect to diesel fuel. The addition of biodiesel to WPO tended to reduce the levels of hydrocarbon- and oxide-containing nitrogen emissions. One drawback of adding biodiesel to WPO was increased carbon monoxide and smoke. Comparing the two biodiesels used in the study, the presence of castor oil in waste plastic oil showed lower carbon monoxide and smoke emissions without penalty in terms of increased levels of hydrocarbon- and oxide-containing nitrogen emissions when the engine was operated at high load.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据