4.8 Article

ATR inhibition potentiates ionizing radiation-induced interferon response via cytosolic nucleic acid-sensing pathways

期刊

EMBO JOURNAL
卷 39, 期 14, 页码 -

出版社

WILEY
DOI: 10.15252/embj.2019104036

关键词

ATR; cGAS; STING; MAVS; radiation; type I interferon

资金

  1. MD Anderson's NIH Cancer Center Support Grant [P30CA016672]
  2. Pamela and Wayne Garrison Distinguished Chair in Cancer Research
  3. CPRIT [RP160667]
  4. NIH [CA157448, CA193124, CA210929, CA216911, CA216437]
  5. NATIONAL CANCER INSTITUTE [ZIABC010959, ZIABC010283] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Mechanistic understanding of how ionizing radiation induces type I interferon signaling and how to amplify this signaling module should help to maximize the efficacy of radiotherapy. In the current study, we report that inhibitors of the DNA damage response kinase ATR can significantly potentiate ionizing radiation-induced innate immune responses. Using a series of mammalian knockout cell lines, we demonstrate that, surprisingly, both the cGAS/STING-dependent DNA-sensing pathway and the MAVS-dependent RNA-sensing pathway are responsible for type I interferon signaling induced by ionizing radiation in the presence or absence of ATR inhibitors. The relative contributions of these two pathways in type I interferon signaling depend on cell type and/or genetic background. We propose that DNA damage-elicited double-strand DNA breaks releases DNA fragments, which may either activate the cGAS/STING-dependent pathway or-especially in the case of AT-rich DNA sequences-be transcribed and initiate MAVS-dependent RNA sensing and signaling. Together, our results suggest the involvement of two distinct pathways in type I interferon signaling upon DNA damage. Moreover, radiation plus ATR inhibition may be a promising new combination therapy against cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据