4.7 Article

The exposure risk of typical VOCs to the human beings via inhalation based on the respiratory deposition rates by proton transfer reaction-time of flight-mass spectrometer

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ecoenv.2020.110615

关键词

VOCs; Inhalation exposure; Respiratory deposition rates; PTR-TOF-MS; Conventional lung function

资金

  1. National Natural Science Foundation of China [41731279, 41991310, U1901210]
  2. Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program [2017BT01Z032]
  3. Innovation Team Project of Guangdong Provincial Department of Education, China [2017KCXTD012]
  4. Leading Scientific, Technical and Innovation Talents of Guangdong special support program [2016TX03Z094]

向作者/读者索取更多资源

The respiratory deposition rates are the important analytical parameters for human health risk assessment related to the environmental volatile organic compounds (VOCs). In present study, the deposition rates from the linear regressions of CH2O, CH5N, C2H6O, C2H4O2, C3H8O, C6H6, C7H8, C8H8, and C8H10 of 120 healthy volunteers were obtained with significantly different from the respective calculated deposition rates. The CH2O (formaldehyde) has the highest deposition rate, indicating the highest associated exposure risk of CH2O if the persons are exposed to the same concentrations of these VOCs through inhalation. In order to explore the effects of the breathing models and sampling time on the deposition rates of VOCs, volunteers were first asked to breathe successively with nasal-in-nasal-out, oral-in-nasal-out, and oral-in-oral-out breathing models before and after three meals for three days. Sampling time variation has no effect on the deposition rates of selected VOCs, while the deposition rates of C2H4O2, C3H8O, C6H6, C7H8 and C8H10 by nasal-in-nasal-out were significantly different from oral-in-oral-out and nasal-in-oral-out models. Among all the breathing models, nasal-in-oral-out comprises the entire respiratory system. In order to further validate the results, the deposition rates of the selected VOCs were calculated in 120 healthy volunteers using nasal-in-oral-out breathing model for unlimited time after the conventional lung function examination. Difference in gender and body mass index had no effect on the deposition rates of VOCs, while the age affects the deposition rates of CH2O, CH5N and C2H4O2. Positive correlation analysis between lung function factors and deposition rates revealed that the individuals with larger lung function factors are more susceptible to deposit the VOCs. Overall, the main conclusion can be drawn that the respiratory deposition rates were influenced by the physiological factors. Therefore, the major objective for future research is to accurately calculate the deposition rates of environmental VOCs for health-risk assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据