4.7 Article

A numerical examination of the effect of sulfide dissolution on silicate weathering

期刊

EARTH AND PLANETARY SCIENCE LETTERS
卷 539, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.epsl.2020.116239

关键词

sulfide weathering; silicate weathering; climate; atmospheric CO2; Phanerozoic; water table

资金

  1. Department of Energy Office of Basic Energy Science [DE-FG02-05ER15675]

向作者/读者索取更多资源

Silicate weathering regulates climate on geological time scales as a net, climate-sensitive sink of atmospheric CO2. On the other hand, sulfuric acid produced through sulfide dissolution affects silicate weathering, diminishing its effectiveness as a climate regulator based on evidence from river chemistry. This study takes a theoretical approach to quantitatively examine the effect of sulfide dissolution, coupling a one-dimensional model of pyrite weathering to that of albite transformation to kaolinite. The coupled model reveals that when the reaction front of sulfide is deeper than that of silicates reacting with CO2, the silicate-weathering feedback on climate is not directly affected by sulfide dissolution, but only indirectly through oceanic processes such as reverse weathering and carbonate deposition. In turn, when sulfide dissolution occurs within zones of CO2-silicate reactions close to the surface, the feedback between climate and silicate weathering can be significantly weakened because sulfuric acid competes effectively with carbonic acid in mineral dissolution. As the depth of the sulfide reaction front can be changed by variations in water table depth, the latter feedback weakening could have occurred in concert with climate-change-driven water table fluctuations, amplifying atmospheric CO2-variations during the Phanerozoic. (c) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据