4.7 Article

A Precision Medicine Approach to the Rescue of Function on Malignant Calmodulinopathic Long-QT Syndrome

期刊

CIRCULATION RESEARCH
卷 120, 期 1, 页码 39-+

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.116.309283

关键词

action potential; calmodulin; induced pluripotent stem cells; L-type calcium channels; long-QT syndrome; nucleotides

资金

  1. American Heart Association [R01MH065531]
  2. Magic that Matters Fund
  3. Zegar Family Foundation
  4. Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program

向作者/读者索取更多资源

Rationale: Calmodulinopathies comprise a new category of potentially life-threatening genetic arrhythmia syndromes capable of producing severe long-QT syndrome (LQTS) with mutations involving CALM1, CALM2, or CALM3. The underlying basis of this form of LQTS is a disruption of Ca2+/calmodulin (CaM)-dependent inactivation of L-type Ca2+ channels. Objective: To gain insight into the mechanistic underpinnings of calmodulinopathies and devise new therapeutic strategies for the treatment of this form of LQTS. Methods and Results: We generated and characterized the functional properties of induced pluripotent stem cell-derived cardiomyocytes from a patient with D130G-CALM2-mediated LQTS, thus creating a platform with which to devise and test novel therapeutic strategies. The patient-derived induced pluripotent stem cell-derived cardiomyocytes display (1) significantly prolonged action potentials, (2) disrupted Ca2+ cycling properties, and (3) diminished Ca2+/CaM-dependent inactivation of L-type Ca2+ channels. Next, taking advantage of the fact that calmodulinopathy patients harbor a mutation in only 1 of 6 redundant CaM-encoding alleles, we devised a strategy using CRISPR interference to selectively suppress the mutant gene while sparing the wild-type counterparts. Indeed, suppression of CALM2 expression produced a functional rescue in induced pluripotent stem cell-derived cardiomyocytes with D130G-CALM2, as shown by the normalization of action potential duration and Ca2+/CaM-dependent inactivation after treatment. Moreover, CRISPR interference can be designed to achieve selective knockdown of any of the 3 CALM genes, making it a generalizable therapeutic strategy for any calmodulinopathy. Conclusions: Overall, this therapeutic strategy holds great promise for calmodulinopathy patients as it represents a generalizable intervention capable of specifically altering CaM expression and potentially attenuating LQTS-triggered cardiac events, thus initiating a path toward precision medicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据