4.6 Article

Extension coordinated control of four wheel independent drive electric vehicles by AFS and DYC

期刊

CONTROL ENGINEERING PRACTICE
卷 101, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.conengprac.2020.104504

关键词

Four wheel independent drive; Phase plane; Triple-step; Extension coordinated control

资金

  1. National Natural Science Foundation of China [51675151, U1564201]
  2. Science and Technology Major Project in Anhui Province [17030901060]

向作者/读者索取更多资源

In this paper, a new extension coordinated controller was proposed for driving stability and handling performance of four wheel independent drive electric vehicles. The proposed controller has three levels. The upper control level uses a new extension coordinated controller to find the weights of a active front wheel steering controller (AFS) and a direct yaw moment controller (DYC). Moreover, considering the different vehicle speed, the road adhesion coefficient and the wheel steering angle, a phase plane method was used to provide the dynamic stability boundary for the switching control strategy of AFS and DYC. The medium control level used the triple-step nonlinear method to calculate the additional front wheel angle and additional yaw moment required by the lower control level. The additional front wheel angle and additional yaw moment was applied to the steering motor and the four wheel drive motor, respectively. In order to obtain the target wheel force, the four wheel drive torque was optimized based on a quadratic programming method. The proposed extension coordinated controller was performed in the CarSim/Simulink co-simulation platform, hardware-in-loop (HIL) and vehicle test. The results showed that the proposed controller can effectively improved both the stability and handling performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据