4.7 Article

Correlation between pore structure, compressive strength and thermal conductivity of porous metakaolin geopolymer

期刊

CONSTRUCTION AND BUILDING MATERIALS
卷 247, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2020.118641

关键词

Geopolymer; Metakaolin; Porous; Pore; Foam; Surfactant

资金

  1. Fundamental Research Grant Scheme - Ministry of Education Malaysia [FRGS/1/2015/TK05/UNIMAP/02/2]
  2. Partnership for Research in Geopolymer Concrete - European Union [H2020-MSCA-RISE-2015-689857-PRIGeoC]

向作者/读者索取更多资源

This paper investigates the effect of mixing parameters (that are, alkali concentration, AA ratio, and MK/AA ratio) on the thermal conductivity of metakaolin geopolymers. The combination effect of foaming agent (H2O2) and surfactant (Tween 80) on the physical properties, compressive strength, and pore characteristic was also elucidated. Results showed that metakaolin geopolymer with maximum compressive strength of 33 MPa, bulk density of 1680 kg/m(3), porosity of 18% and thermal conductivity of 0.40 W/mK were achieved with alkali concentration of 10 M, AA ratio of 1.0 and MK/AA ratio of 0.8. Gradation analysis demonstrated that AA ratio was the strength determining factor. Whilst, thermal conductivity was dependent on the MK/AA ratio. Adding H2O2 and surfactant produced geopolymer foam with acceptable compressive strength (0.4-6 MPa). The geopolymer foam had bulk density of 471-1212 kg/m(3), porosity of 36-86% and thermal conductivity of 0.11-0.30 W/mK. Pore structure, size, and distribution were governed by H2O2 and surfactant dosages that have a great impact on the compressive strength. Narrower pore distribution and smaller pore diameter were achieved when both foaming agent and surfactant were used instead of foaming agent alone. The pore size and distribution varied to a greater extent with varying H2O2 contents. Surfactant illustrated distinct pore stabilizing effect at low H2O2 (<0.75 wt%) which diminished at high H2O2 content. In terms of thermal conductivity, even with increasing porosity at high H2O2 and surfactant content, the thermal conductivity did not show substantial reduction due to the interconnected pores as a result of pore coalescence. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据