4.7 Article

Multi-component chemo-mechanics based on transport relations for the chemical potential

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2020.113029

关键词

Multi-component; Spinodal decomposition; Chemo-mechanics; Crystal plasticity

资金

  1. DFG
  2. EPSRC [EP/R001715/1]
  3. Airbus-University of Manchester Centre for Metallurgical Excellence, UK
  4. EPSRC [EP/R001715/1] Funding Source: UKRI

向作者/读者索取更多资源

A chemo-mechanical model for a finite-strain elasto-viscoplastic material containing multiple chemical components is formulated and an efficient numerical implementation is developed to solve the resulting transport relations. The numerical solution relies on inverting the constitutive model for the chemical potential. In this work, a semi-analytical inversion for a general family of multi-component regular-solution chemical free energy models is derived. This is based on splitting the chemical free energy into a convex contribution, treated implicitly, and a non-convex contribution, treated explicitly. This results in a reformulation of the system transport equations in terms of the chemical potential rather than the composition as the independent field variable. The numerical conditioning of the reformulated system, discretised by finite elements, is shown to be significantly improved, and convergence to the Cahn-Hilliard solution is demonstrated for the case of binary spinodal decomposition. Chemo-mechanically coupled binary and ternary spinodal decomposition systems are then investigated to illustrate the effect of anisotropic elastic deformation and plastic relaxation of the resulting spinodal morphologies in more complex material systems. (C) 2020 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据