4.7 Article

Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cma.2020.113030

关键词

Cardiovascular modeling; Uncertainty quantification; Multilevel Monte Carlo; Multifidelity Monte Carlo; Multilevel multifidelity Monte Carlo

资金

  1. NIH [R01-EB018302, R01-HL123689]
  2. National Science Foundation [NSF CDSE CBET 1508794, ACI-1548562]
  3. Center for Computing Research Summer Fellowship at Sandia National Laboratories
  4. Stanford Research Computing Center (SRCC)
  5. U.S. Department of Energy's National Nuclear Security Administration [DE-NA0003525]

向作者/读者索取更多资源

Standard approaches for uncertainty quantification in cardiovascular modeling pose challenges due to the large number of uncertain inputs and the significant computational cost of realistic three-dimensional simulations. We propose an efficient uncertainty quantification framework utilizing a multilevel multifidelity Monte Carlo (MLMF) estimator to improve the accuracy of hemodynamic quantities of interest while maintaining reasonable computational cost. This is achieved by leveraging three cardiovascular model fidelities, each with varying spatial resolution to rigorously quantify the variability in hemodynamic outputs. We employ two low-fidelity models (zero- and one-dimensional) to construct several different estimators. Our goal is to investigate and compare the efficiency of estimators built from combinations of these two low-fidelity model alternatives and our high-fidelity three-dimensional models. We demonstrate this framework on healthy and diseased models of aortic and coronary anatomy, including uncertainties in material property and boundary condition parameters. Our goal is to demonstrate that for this application it is possible to accelerate the convergence of the estimators by utilizing a MLMF paradigm. Therefore, we compare our approach to single fidelity Monte Carlo estimators and to a multilevel Monte Carlo approach based only on three-dimensional simulations, but leveraging multiple spatial resolutions. We demonstrate significant, on the order of 10 to 100 times, reduction in total computational cost with the MLMF estimators. We also examine the differing properties of the MLMF estimators in healthy versus diseased models, as well as global versus local quantities of interest. As expected, global quantities such as outlet pressure and flow show larger reductions than local quantities, such as those relating to wall shear stress, as the latter rely more heavily on the highest fidelity model evaluations. Similarly, healthy models show larger reductions than diseased models. In all cases, our workflow coupling Dakota's MLMF estimators with the SimVascular cardiovascular modeling framework makes uncertainty quantification feasible for constrained computational budgets. (C) 2020 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据