4.7 Review

Recent advancements of plant-based natural fiber-reinforced composites and their applications

期刊

COMPOSITES PART B-ENGINEERING
卷 200, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2020.108254

关键词

Polymer-matrix composites (PMCs); 3D reinforcement; Mechanical properties; Fiber/matrix bond

资金

  1. US Department of Energy [DE-FOA-0001232]
  2. US Department of Energy (DOE) [DE-AC05-00OR22725]
  3. University of Tennessee Institute of Agriculture
  4. University of Tennessee Agricultural Experiment Station
  5. University of Tennessee AgResearch

向作者/读者索取更多资源

Demands for reducing energy consumption and environmental impacts are the major driving factors for the development of natural fiber-reinforced composites (NFRCs) in many sectors. Compared with synthesized fiber, natural fiber provides several advantages in terms of biodegradability, light weight, low price, life-cycle superiority, and satisfactory mechanical properties. However, the inherent features of plant-based natural fibers have presented challenges to the development and application of NFRCs, such as variable fiber quality, limited mechanical properties, water absorption, low thermal stability, incompatibility with hydrophobic matrices, and propensity to agglomeration. Substantial research has recently been conducted to address these challenges for improved performance of NFRCs and their applications. This article reviews the recent advancements of plant-based NFRCs, focusing on strategies and breakthroughs in enhancing the NFRCs' performance, including fiber modification, fiber hybridization, lignocellulosic fillers incorporation, conventional processing techniques, additive manufacturing (3D printing), and new fiber source exploration. The sustainability of plant-based NFRCs using life-cycle assessment and the burgeoning applications of NFRCs with emphasis on the automotive industry are also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据