4.7 Article

In-situ characterization of the local mechanical behaviour of polymer matrix in 3D carbon fiber composites by cyclic indentation test

期刊

COMPOSITE STRUCTURES
卷 244, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2020.112268

关键词

Instrumented indentation; Polymers; Polymer-matrix composites

资金

  1. French Government program Investissements d'Avenir (LABEX INTERACTIFS) [ANR-11-LABX-0017-01]
  2. French Government program Investissements d'Avenir (EQUIPEX GAP) [ANR-11-EQPX-0018]
  3. Poitou-Charentes region

向作者/读者索取更多资源

In this work, a cyclic indentation test is employed for the in-situ characterisation of the local mechanical properties of a PR520 epoxy resin matrix in a 3D carbon fiber composite. Since the evolution of indentation response with time is studied, the cyclic loading allows to characterise both the elastic and the time dependent, viscoelastic, mechanical response of the material simultaneously. The 3D carbon fiber composite used in this study contains a number of large resin pockets between fiber bundles (mesoscopic scale) with a characteristic dimension ranging from several hundred of micrometers to several millimeters. The mechanical behaviour of the polymer matrix is investigated on the external surface and in volume of the composite and compared with the neat polymer. The instantaneous elastic modulus from reloading, the energy ratio and the residual depth are determined from the cyclic material response and compared through a Student t-test based statistical analysis. Results show that there is at least 95% of probability that the neat and in-situ polymer matrix material belong to different populations. However, this difference is rather small (between 1 and 2.5%) and almost constant with cycles. Moreover, a difference between composite core and surface was measured.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据