4.5 Article

Analysis of the Financial Chaotic Model with the Fractional Derivative Operator

期刊

COMPLEXITY
卷 2020, 期 -, 页码 -

出版社

WILEY-HINDAWI
DOI: 10.1155/2020/9845031

关键词

-

向作者/读者索取更多资源

Numerical discretization for the fractional differential equations is applied to the chaotic financial model described by the Caputo derivative. The graphical representations to support the numerical discretization are presented. We profit by analyzing the impact generated by the variations of the saving rate, the per investment cost, and the elasticity of demands in the dynamics of the solutions obtained with our numerical scheme. Notably, we use bifurcation diagrams to quantify the impact of the saving rate, the per investment cost, and the elasticity of demands, as well as the Lyapunov exponent to characterize the existence of chaos for the chosen value of the fractional order. The chaos observed depends strongly on these previously mentioned parameters. We finish by proposing a suitable control to synchronize the drive system and the response fractional financial model, using Lyapunov direct methods. The stability analysis of the equilibrium points of the chaotic financial model has been presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据