4.6 Article

Effect of selenium-rich Bacillus subtilis against mercury-induced intestinal damage repair and oxidative stress in common carp

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.cbpc.2020.108851

关键词

Selenium; Bacillus subtilis; Mercury; Attenuation; Antioxidant responses

资金

  1. National Natural Science Foundation of China [30972191]
  2. 948 Program from the Ministry of Agriculture of China [2014Z34]

向作者/读者索取更多资源

The study investigated the impact of Se-rich B. subtilis on Hg-induced toxicity in fish. Results demonstrated that Se-rich B. subtilis protected the intestines from Hg-induced damage and exhibited significant antioxidant effects.
Mercury (Hg) poisoning in humans and fish represents a significant global problem. Hg is one of the most dangerous threats to the aquatic ecosystem due to its high toxicity. Mercury has a high oxidative stress-inducing potential, and can compounds exert toxic effects by interacting with many important enzymes involved in the regulation of antioxidants. Selenium (Se) supplementation can reactivate the mercury-inhibited enzymes viability. The probiotic Bacillus subtilis is widely used in aquaculture, and it has a certain adsorption effect on heavy metals. The interactions between Hg and Se have been rigorously investigated, particularly due to the observed protective effects of Se against Hg toxicity. The objective of this study was to evaluate whether Se-rich B. subtilis ameliorated Hg-induced toxicity in C. carpio var. specularis. Fish were exposed to waterborne Hg (0.03 mg/L) and fed a diet supplemented with 10(5) cfu/g Se-rich B. subtilis for 30 days. Fish were sampled, antioxidant activity, and Intestinal damage repair were assessed. Our results indicated that Se-rich B. subtilis protected the Intestinal from Hg-induced morphological changes. Hg treatment significantly decreased the activity levels of SOD, CAT and GSH-PX while increasing the activity levels of MDA, GST, and GSH. Hg treatment also upregulated the mRNA expression of Nrf2, CAT, GSH-PX and HO-1, and reduced expression of keap1. Se-rich B. subtilis had a significant protective effect against Hg-induced oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据