4.7 Article

Impact of pressure-based HACA rates on soot formation in varying-pressure coflow laminar diffusion flames

期刊

COMBUSTION AND FLAME
卷 218, 期 -, 页码 109-120

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2020.03.030

关键词

Soot; High pressure; Laminar flames; Numerical modeling

资金

  1. Canada Research Chairs program [RGPIN-2019-04893]
  2. NSERC of Canada
  3. Canada Foundation for Innovation under the Compute Canada
  4. Government of Ontario
  5. Ontario Research Fund - Research Excellence
  6. University of Toronto

向作者/读者索取更多资源

There are several processes to occur in soot formation and destruction for which some in the growth regime require a better understanding. In this work, a consistent surface reactivity model, developed in recent years, has been implemented across various sooting laminar flames at varying pressures. The surface reactivity function proposed by Khosousi and Dworkin (2015) is employed in the present study. It is based on the temperature history of soot particles. As the functionally dependent model has been derived and validated for atmospheric pressure flames, there are discrepancies between simulation and experiment that can be observed as pressures vary. One reason for these discrepancies could be explained by the fact that chemical reaction rates for the soot growth mechanism at atmospheric combustion do not adequately characterize the kinetics at higher pressures. Based on a recently published study (Frenklach et al., 2019), the elementary reaction rates that compose the Hydogen-Addition-Carbon-Abstraction soot surface growth mechanism depend on pressure and an empirical pressure scaling factor to account for this pressure dependence has been introduced. It has been determined that after applying the new empirical pressure scaling factor for the soot growth mechanism, the performance of the functionally dependent surface reactivity model improves in the wing regions of the flame for pure-ethylene flames; however, there is minimal change on the wings for the nitrogen-diluted flames. Additionally, the quantity for soot concentration along the centerline of all flames is nearly independent of the surface reactivity model chosen and needs further investigation. For the flames investigated, it is concluded that pressure dependent HACA rates do not alleviate all discrepancies between the numerical and experimental results and that further work is required. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据