4.6 Article

Carbon-coated porous TiO2 layers templated by core-shell polymer particles: Film processing and charge transfer resistance assessment

出版社

ELSEVIER
DOI: 10.1016/j.colsurfa.2020.125390

关键词

Porous TiO2 films; Core-shell particle templates; Anatase TiO2; Conductive carbon coating; Charge transfer properties

资金

  1. Walloon Region, Belgium, through the SOLIDYE_1 Project (Complement FEDER) [1510607]
  2. Belgian National Funds for Scientific Research (F.R.S.-FNRS)

向作者/读者索取更多资源

The performances of titanium dioxide (TiO2) thin films used in photoelectrochemical applications (solar cells, water splitting, photocatalysis, etc) highly depend on their morphology and interface. In this work, we describe a straightforward strategy for designing conductive carbon-coated TiO2 porous layers allowing for the tuning of interfacial charge transfers. Increased specific surface and improved conductivity are expected from the porosity and the carbon coating, respectively. In practice, polystyrene/polyacrylonitrile (PS-PAN) and polystyrene/polydopamine (PS-PDA) core-shell particles synthesized by emulsion polymerization are considered as templating agents for the production of carbon-coated and ordered porous TiO2 layers. After spin coating deposition of the particles, infiltration of the TiO2 precursor and calcination, voids are created in the film by thermal degradation of the PS cores whereas PAN and PDA produced carbon at the surface of the TiO2 inverse opal matrix. Uncoated PS particles are also considered as benchmark templating agents. Size and composition of the polymer particles as well as the morphology and electronic properties of the corresponding porous TiO2 films are evaluated. In particular, the charge transfer resistance of the films is investigated via Electrochemical Impedance Spectroscopy (EIS) as a preliminary assessment of these unprecedented carbon-coated porous TiO2 layers as semiconducting materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据