4.7 Article

Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants

期刊

CLINICAL NUTRITION
卷 40, 期 3, 页码 778-787

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.clnu.2020.07.024

关键词

Healthy term infants; Prebiotics; Fermented formula; Postbiotics; Early-life microbiota; Secretory IgA

资金

  1. Danone Nutricia Research

向作者/读者索取更多资源

The study demonstrated that the addition of new bioactive compounds and prebiotics in infant formula can improve microbiota composition, increase SIgA concentration, and bring the metabolic activity of the microbiome closer to that of breastfed infants. All tested formulas were associated with normal growth and good tolerance in infants.
Background & aims: Microbiome-modulators can help positively steer early-life microbiota development but their effects on microbiome functionality and associated safety and tolerance need to be demonstrated. We investigated the microbiome impact of a new combination of bioactive compounds, produced by the food-grade microorganisms Bifidobacterium breve C50 and Streptococcus thermophilus ST065 during a fermentation process, and prebiotics in an infant formula. Tolerance and safety were also assessed. Methods: An exploratory prospective, randomized, double-blind, controlled, multi-centre study was designed to investigate the effect of bioactive compounds and prebiotics (short-chain galacto-oligosaccharides (scGOS)/long-chain fructo-oligosaccharides (lcFOS) 9:1). Experimental formulas containing these bioactive compounds and prebiotics (FERM/scGOS/lcFOS), prebiotics (scGOS/lcFOS), or bioactive compounds (FERM), were compared to a standard cow's milk-based control formula (Control). Exclusively breastfed infants were included as a reference arm since exclusive breastfeeding is considered as the optimal feeding for infants. The study lasted six months and included visits to health care professionals at baseline, two, four and six months of age. Stool SIgA concentration was the primary study outcome parameter. Results: There were 280 infants randomized over the experimental arms and 70 infants entered the breastfed-reference arm. Demographics were balanced, growth and tolerance parameters were according to expectation and adverse events were limited. At four months of age the median SIgA concentration in the FERM/scGOS/lcFOS group was significantly higher compared to the Control group (p = 0.03) and was more similar to the concentrations found in the breastfed-reference group. Bifidobacterium increased over time in all groups. The FERM/scGOS/lcFOS combination resulted in a microbiota composition and metabolic activity closer to the breastfed infants' microbiome. Conclusion: The FERM/scGOS/lcFOS combination showed a significant positive effect on SIgA levels. All formulas tested were associated with normal growth and were well-tolerated. Additionally, at four months of age the FERM/scGOS/lcFOS formula brought the microbiome composition and metabolic activity closer towards that of breastfed infants. (C) 2020 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据