4.7 Article

Acquired FGFR and FGF Alterations Confer Resistance to Estrogen Receptor (ER) Targeted Therapy in ER+ Metastatic Breast Cancer

期刊

CLINICAL CANCER RESEARCH
卷 26, 期 22, 页码 5974-5989

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1078-0432.CCR-19-3958

关键词

-

类别

资金

  1. Department of Defense [W81XWH-13-1-0032]
  2. NCI Breast Cancer SPORE at DF/HCC [P50CA168504]
  3. Susan G. Komen [CCR15333343]
  4. The V Foundation
  5. Breast Cancer Alliance
  6. Cancer Couch Foundation
  7. Twisted Pink
  8. Hope Scarves
  9. Breast Cancer Research Foundation
  10. ACTNOW
  11. Fashion Footwear Association of New York
  12. Friends of Dana-Farber Cancer Institute
  13. Stand Up to Cancer
  14. National Science Foundation
  15. SU2C-TVF Convergence Scholarship
  16. 2013 Landon Foundation-AACR INNOVATOR Award for Research in Personalized Cancer Medicine [13-60-27-WAGL]
  17. 2017AACRBasic Cancer Research Fellowship [17-40-01-MAP]
  18. National Institutes of Health Research (NIHR) [17/40/01] Funding Source: National Institutes of Health Research (NIHR)

向作者/读者索取更多资源

Purpose: To identify clinically relevant mechanisms of resistance to ER-directed therapies in ER+ breast cancer. Experimental Design: We conducted a genome-scale functional screen spanning 10,135 genes to investigate genes whose overexpression confer resistance to selective estrogen receptor degra-ders. In parallel, we performed whole-exome sequencing in paired pretreatment and postresistance biopsies from 60 patients with ER+ metastatic breast cancer who had developed resistance to ER-targeted therapy. Furthermore, we performed experiments to validate resistance genes/pathways and to identify drug combinations to overcome resistance. Results: Pathway analysis of candidate resistance genes demonstrated that the FGFR, ERBB, insulin receptor, and MAPK pathways represented key modalities of resistance. The FGFR pathway was altered via FGFR1, FGFR2, or FGF3 amplifications or FGFR2 mutations in 24 (40%) of the postresistance biopsies. In 12 of the 24 postresistance tumors exhibiting FGFR/FGF alterations, these alterations were acquired or enriched under the selective pressure of ER-directed therapy. In vitro experiments in ER+ breast cancer cells confirmed that FGFR/FGF alterations led to fulvestrant resistance as well as cross-resistance to the CDK4/6 inhibitor palbociclib. RNA sequencing of resistant cell lines demonstrated that FGFR/FGF induced resistance through ER reprogramming and activation of the MAPK pathway. The resistance phenotypes were reversed by FGFR inhibitors, a MEK inhibitor, and/or a SHP2 inhibitor. Conclusions: Our results suggest that FGFR pathway is a distinct mechanism of acquired resistance to ER-directed therapy that can be overcome by FGFR and/or MAPK pathway inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据