4.5 Article

Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea

期刊

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCEP.120.008437

关键词

artificial intelligence; cardiomyopathies; dyspnea; electrocardiogram; heart failure

向作者/读者索取更多资源

Background: Identification of systolic heart failure among patients presenting to the emergency department (ED) with acute dyspnea is challenging. The reasons for dyspnea are often multifactorial. A focused physical evaluation and diagnostic testing can lack sensitivity and specificity. The objective of this study was to assess the accuracy of an artificial intelligence-enabled ECG to identify patients presenting with dyspnea who have left ventricular systolic dysfunction (LVSD). Methods: We retrospectively applied a validated artificial intelligence-enabled ECG algorithm for the identification of LVSD (defined as LV ejection fraction <= 35%) to a cohort of patients aged >= 18 years who were evaluated in the ED at a Mayo Clinic site with dyspnea. Patients were included if they had at least one standard 12-lead ECG acquired on the date of the ED visit and an echocardiogram performed within 30 days of presentation. Patients with prior LVSD were excluded. We assessed the model performance using area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity. Results: A total of 1606 patients were included. Median time from ECG to echocardiogram was 1 day (Q1: 1, Q3: 2). The artificial intelligence-enabled ECG algorithm identified LVSD with an area under the receiver operating characteristic curve of 0.89 (95% CI, 0.86-0.91) and accuracy of 85.9%. Sensitivity, specificity, negative predictive value, and positive predictive value were 74%, 87%, 97%, and 40%, respectively. To identify an ejection fraction <50%, the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity were 0.85 (95% CI, 0.83-0.88), 86%, 63%, and 91%, respectively. NT-proBNP (N-terminal pro-B-type natriuretic peptide) alone at a cutoff of >800 identified LVSD with an area under the receiver operating characteristic curve of 0.80 (95% CI, 0.76-0.84). Conclusions: The ECG is an inexpensive, ubiquitous, painless test which can be quickly obtained in the ED. It effectively identifies LVSD in selected patients presenting to the ED with dyspnea when analyzed with artificial intelligence and outperforms NT-proBNP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据