4.7 Article

Elemental and radionuclide exposures and uptakes by small rodents, invertebrates, and vegetation at active and post-production uranium mines in the Grand Canyon watershed

期刊

CHEMOSPHERE
卷 263, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.127908

关键词

Breccia pipe uranium mining; Body burdens; Ore production stage; Exposure assessment; Northern Arizona

资金

  1. Contaminant Biology Program of the USGS Environmental Health Mission Area

向作者/读者索取更多资源

The study indicates that biota in the Grand Canyon watershed have taken up uranium and other elements from ore exposure and surface contamination, potentially leading to prolonged exposure risk. However, the specific biological effects of certain mine elements on organisms remain unclear.
The effects of breccia pipe uranium mining in the Grand Canyon watershed (Arizona) on ecological and cultural resources are largely unknown. We characterized the exposure of biota to uranium and cooccurring ore body elements during active ore production and at a site where ore production had recently concluded. Our results indicate that biota have taken up uranium and other elements (e.g., arsenic, cadmium, copper, molybdenum, uranium) from exposure to ore and surficial contamination, like blowing dust. Results indicate the potential for prolonged exposure to elements and radionuclides upon conclusion of active ore production. Mean radium-226 in deer mice was up to 4 times greater than uranium-234 and uranium-238 in those same samples; this may indicate a potential for, but does not necessarily imply, radium-226 toxicity. Soil screening benchmarks for uranium and molybdenum and other toxicity thresholds for arsenic, copper, selenium, uranium (e.g., growth effects) were exceeded in vegetation, invertebrates, and rodents (Peromyscus spp., Thomomys bottae, Tamias dorsalis, Dipodomys deserti). However, the prevalence and severity of microscopic lesions in rodent tissues (as direct evidence of biological effects of uptake and exposure) could not be definitively linked to mining. Our data indicate that land managers might consider factors like species, seasonal changes in environmental concentrations, and bioavailability, when determining mine permitting and remediation in the Grand Canyon watershed. Ultimately, our results will be useful for site-specific ecological risk analysis and can support future decisions regarding the mineral extraction withdrawal in the Grand Canyon watershed and elsewhere. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据