4.7 Article

Activated carbon stimulates microbial diversity and PAH biodegradation under anaerobic conditions in oil-polluted sediments

期刊

CHEMOSPHERE
卷 248, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126023

关键词

Bioremediation; Powdered activated carbon (PAC); Microbial communities; Hydrocarbon pollution; Naphthalene; 16S rRNA sequencing

资金

  1. Swedish Government's funding of strategic research areas (SFO), through the Baltic Sea Center in the Research project Baltic Cap
  2. Formas funded Swedish Geotechnical Institutes' program TUFFO
  3. Stockholm University, Department of Ecology, Environment and Plant Sciences (DEEP)
  4. Swedish Research Council Formas [2017-01513]
  5. Formas [2017-01513] Funding Source: Formas

向作者/读者索取更多资源

Biodegradation by microorganisms is a useful tool that helps alleviating hydrocarbon pollution in nature. Microbes are more efficient in degradation under aerobic than anaerobic conditions, but the majority of sediment by volume is generally anoxic. Incubation experiments were conducted to study the biodegradation potential of naphthalene-a common polycyclic aromatic hydrocarbon (PAH)-and the diversity of microbial communities in presence/absence of activated carbon (AC) under aerobic/anaerobic conditions. Radio-respirometry experiments with endogenous microorganisms indicated that degradation of naphthalene was strongly stimulated (96%) by the AC addition under anaerobic conditions. In aerobic conditions, however, AC had no effects on naphthalene biodegradation. Bioaugmentation tests with cultured microbial populations grown on naphthalene showed that AC further stimulated (92%) naphthalene degradation in anoxia. Analysis of the 16S rRNA gene sequences implied that sediment amendment with AC increased microbial community diversity and changed community structure. Moreover, the relative abundance of Geobacter, Thiobacillus, Sulfuricurvum, and methanogenic archaea increased sharply after amendment with AC under anaerobic conditions. These results may be explained by the fact that AC particles promoted direct interspecies electron transfer (DIET) between microorganisms involved in PAH degradation pathways. We suggest that important ecosystem functions mediated by microbes-such as hydrocarbon degradation-can be induced and that AC enrichment strategies can be exploited for facilitating bioremediation of anoxic oil-contaminated sediments and soils. (C) 2020 The Authors. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据