4.7 Article

Coupling anodic oxidation, biosorption and alternating current as alternative for wastewater purification

期刊

CHEMOSPHERE
卷 249, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126480

关键词

Anodic oxidation; Biosorption; Coupling; Alternating current; SS/PbO2

资金

  1. Laboratory of Energy and Materials
  2. Laboratory of Wastewater and environment (Center of water researches and technologies)
  3. FP7 FP4BATIW EuroMediterranean project

向作者/读者索取更多资源

Anodic oxidation process is considered as an effective solution for the treatment of refractory effluents. Its performance is strongly depending on the stability of the anodes used during the process. For this reason, we aim to enhance the stability of the SS/PbO2 anodes electrodeposited by pulsed current while studying their performance for the anodic oxidation of methylene blue and industrial textile wastewater. The basic idea deals with the possibility to replace the expensive alternatives used for reinforcing the steadiness of the anodes during the anodic oxidation by a simple method based on coupling electro-chemical oxidation with biosorption by vegetable material (Luffa cylindrica). The performance of the coupling process was optimized based on its performance in colored and industrial wastewater depollution. Results confirmed the efficiency of the coupling process where 98.7 and 80.02% of methylene blue were removed, respectively, after 60 and 120 min for alternating and direct current. Otherwise, 62.84 and 46.87% of methylene blue were removed by anodic oxidation, respectively, after 120 and 180 min for alternating and direct current. The % COD obtained for the anodic oxidation and the coupling process reached 57.45, 33.61, 91.32 and 75.48% respectively for alternating and direct current. The use of alternating current for both processes has enhanced the speed and the efficiency. Atomic absorption analysis has confirmed that the rates obtained of Pb-2(+) complied with those allowed by the Standards. LC/MS analysis allowed the identification of by-products generated and the germination tests proved the reuse of the treated water. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据