4.7 Review

Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials - A review

期刊

CHEMOSPHERE
卷 253, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126770

关键词

Nanostructured materials; Environmental remediation; Photocatalytic degradation; Carbon nanotubes; Graphene oxide nanomaterials; Eco-toxicity

资金

  1. Science and Technology Commission of Shanghai Municipality [17JC1403300]

向作者/读者索取更多资源

An unprecedented rise in population growth and rapid worldwide industrial development are associated with the increasing discharge of a range of toxic and baleful compounds. These toxic pollutants including dyes, endocrine-disrupters, heavy metals, personal care products, and pharmaceuticals are destructing nature's balance and intensifying environmental toxicity at a disquieting rate. Therefore, finding better, novel and more environmentally sound approaches for wastewater remediation are of great importance. Nanoscale materials have opened up some new horizons in various fields of science and technology. Among a range of treatment technologies, nanostructured materials have recently received incredible interest as an emerging platform for wastewater remediation owing to their exceptional surface-area-tovolume ratio, unique electrical and chemical properties, quantum size effects, high scalability, and tunable surface functionalities. An array of nanomaterials including noble metal-based nanostructures, transition metal oxide nanomaterials, carbon-based nanomaterials, carbon nanotubes, and graphene/graphene oxide nanomaterials to their novel nanocomposites and nanoconjugates have been attempted as the promising catalysts to overcome environmental dilemmas. In this review, we summarized recent advances in nanostructured materials that are particularly engineered for the remediation of environmental contaminants. The toxicity of various classes of relevant tailored nanomaterials towards human health and the ecosystem along with perspectives is also presented. In our opinion, an overview of the up-to-date advancements on this emerging topic may provide new ideas and thoughts for engineering low-cost and highly-efficient nanostructured materials for the abatement of recalcitrant pollutants for a sustainable environment. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据