4.7 Article

Magnetic supramolecular polymer: Ultrahigh and highly selective Pb(II) capture from aqueous solution and battery wastewater

期刊

CHEMOSPHERE
卷 248, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126042

关键词

Magnetic supramolecular polymer; Pb(II); Adsorption; Lead-acid battery wastewater

资金

  1. NSFC [21677047, U1604137, 51808200]
  2. Science and Technology Key Program of Henan Province [172102310698]
  3. Natural Science foundation of Henan Province [182300410154]
  4. China Postdoctoral Science Foundation [2018M630825]
  5. Plan for University Scientific Innovation Talent of Henan Province [19HASTIT046]

向作者/读者索取更多资源

For the practical capture of heavy metal ions from wastewater, fabricating environmental friendly adsorbents with high stability and super adsorption capacity are pursuing issue. In this work, we develop magnetic supramolecular polymer composites (M-SMP) by using a simple two-step hydrothermal method. Systematical characterizations of morphological, chemical and magnetic properties were conducted to confirm the formation of M-SMP composites. The resulting M-SMP composites were applied to remove Pb(II) from aqueous solution and from real battery wastewater, and easy separation was achieved using a permanent magnet. By investigating the effects of various parameters, we optimized their operating condition for Pb(II) adsorption by the M-SMP. The uptake of Pb(II) onto M-SMP fitted well the pseudo-second-order and Langmuir isotherm models, and favourable thermodynamics showed a spontaneous endothermic process. The SMP endowed M-SMP with ultrahigh adsorption capacity for Pb(II) (946.9 mg g(-1) at pH = 4.0, T = 298 K), remarkable selectivity, satisfactory stability and desirable recyclability. In Pb-contaminated lead-acid battery industrial wastewater, the concentration of Pb(II) declined from 18.070 mg L-1 to 0.091 mg L-1, which meets the current emission standard for the battery industry. These merits, combined with simple synthesis and convenient separation, make M-SMP an outstanding scavenger for the elimination of industrial Pb(II) wastewater. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据