4.7 Article

Insights into dynamic adsorption of lead by nano-hydroxyapatite prepared with two-stage ultrasound

期刊

CHEMOSPHERE
卷 253, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126661

关键词

Nano-hydroxyapatite; Two-stage ultrasonic; Dynamic sorption; Metal fraction

资金

  1. foundation of Nanjing Institute of Environmental Science, Ministry of Ecology and Environment [2018YFC1803102]
  2. Postgraduate Research & Practice Innovation Program of Jiangsu Province [KYCX18_0154]

向作者/读者索取更多资源

Nano-hydroxyapatite (nHAP) has an excellent effect on the remediation of Pb contaminated water and soil. In this study, an efficient modified nHAP was prepared assisted with two-stage ultrasonic irradiation. The effects of ultrasound modification on the nHAP were tested using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform InfraRed spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) and combined batch Pb uptake experiments. The nHAP with ultrasound has a fine structure with the width and length of around 9 nm and 40 nm respectively. The ultrasound parameter of 1s/36s in stage 1 and 16s/18s in stage 2 was verified as the optimum under which the nHAP prepared performed the best with the maximum adsorption capacity of 1300.93 mg/g. The results of XRD and SEM indicated that the sorbent after uptake of Pb2+ was mainly Pb-10((PO4)(6)OH2 (HPY) with insignificant Ca10Pb10-x(PO4)(6)OH2. Compared the results of Pb/Ca, pH and XRD with the metal fraction of Pb in adsorbents during the dynamic sorption process, this research proved that the effects of complexation, cation exchange and dissolution and precipitation coexisted in the initial stage, while the dissolution and precipitation gradually dominated the adsorption mechanism with contact time. The processes of Pb2+ uptake by nHAP sorbents prepared under different ultrasound parameter presented almost the same dynamic mechanism with a little difference in time node. The research of dynamic mechanism of Pb2+ uptake by a superior nHAP is essential for both contaminated water and soil remediation. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据