4.7 Article

Nitrogen-doped porous carbon encapsulating iron nanoparticles for enhanced sulfathiazole removal via peroxymonosulfate activation

期刊

CHEMOSPHERE
卷 250, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2020.126300

关键词

Polyaniline; Porous carbon; Iron nanoparticles; Peroxymonosulfate; Organic pollutants

资金

  1. National Natural Science Foundation of China [51772274]

向作者/读者索取更多资源

Developing novel catalyst with both high efficiency and stability presents an enticing prospect for peroxymonosulfate (PMS) activation. In this paper, nitrogen-doped porous carbon encapsulating iron nanoparticles (CN-Fe) was fabricated by a facile carbothermal reduction process using polyaniline (PANI) and alpha-Fe2O3 as the precursors. The stubborn antibiotics, sulfathiazole (STZ), was employed as a target pollutant, demonstrating that CN-Fe coupled with PMS could achieve 96% removal efficiency and even 57% mineralization rate of STZ within 40 min. More importantly, the rate constant of CN-Fe was calculated to be 0.07665 min(-1), which was 6 times higher than that of the commercial alpha-Fe2O3 catalyst. Furthermore, CN-Fe also presented a favorable catalytic performance for removing other organic pollutants including phenolic compounds and organic dyes. Interestingly, the catalytic activity of the used CN-Fe catalyst could be regenerated after thermal treatment (600 degrees C) and the as-synthesized CN-Fe catalyst exhibited excellent long-term stability with almost no loss of activity after storage for three months. The catalytic mechanism in the CN-Fe/PMS system was elucidated by electron paramagnetic resonance (EPR), linear sweep voltammetry (LSV), radical and electron trapping tests, which confirmed that sulfate radicals (SO4 center dot-), hydroxyl radicals (center dot OH), superoxide radicals (O2(center dot-)) and singlet oxygen (O-1(2)) were generated in the oxidation process with the assistance of electron transfer between PMS and catalyst. To our knowledge, this was the first attempt for the application of PANI-derived CN-Fe hybrid materials as PMS activators and the findings would provide a simple and promising strategy to fabricate highly efficient and environment-benign catalysts for wastewater remediation. (C) 2020 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据