4.6 Article

An encoder-decoder LSTM-based EMPC framework applied to a building HVAC system

期刊

CHEMICAL ENGINEERING RESEARCH & DESIGN
卷 160, 期 -, 页码 508-520

出版社

ELSEVIER
DOI: 10.1016/j.cherd.2020.06.008

关键词

Economic model predictive control; Long short term memory model; Energy optimization; Building HVAC systems

资金

  1. UC Davis College of Engineering
  2. U.S. Department of Energy (DOE) [DE-AC36-08G028308]
  3. National Renewable Energy Laboratory (NREL) Laboratory Directed Research and Development (LDRD) program

向作者/读者索取更多资源

Numerous studies have demonstrated the benefit of economic model predictive control (EMPC) applied to building heating, ventilation, and air conditioning (HVAC) systems. However, the construction and training of predictive models for building HVAC systems are widely recognized as a key technological barrier preventing large-scale adoption of EMPC for buildings. In this work, an encoder-decoder long short-term memory-based EMPC framework is developed. The key advantage of the approach is that a model may be automatically generated from a list of inputs and outputs. From the definition of inputs and outputs, the constructed model may be trained and automatically embedded into the EMPC framework for real-time estimation and control. The overall end-to-end EMPC framework from model training to on-line estimation and control are described. To this end, the encoder-decoder model provides a natural framework for state estimation (encoder), which is required to provide an initial condition for the predictive model of EMPC (decoder). Closed-loop simulations using EnergyPlus are performed to demonstrate the approach. The simulated closed-loop system consists of a building zone from a multi-zone building, which is served by an air handling unit-variable air volume HVAC system. For the HVAC example considered, the trained encoder-decoder model can predict the indoor air temperature and HVAC sensible cooling rate of a building zone over a two-day horizon with high accuracy. Considering a time-of-use electric rate structure, the EMPC, which manipulates the zone temperature setpoint, can reduce the HVAC power consumption cost relative to keeping the zone temperature setpoint at its maximum value (i.e., minimum energy approach). (C) 2020 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据