4.7 Article

Immobilization of U(VI) by stabilized iron sulfide nanoparticles: Water chemistry effects, mechanisms, and long-term stability

期刊

CHEMICAL ENGINEERING JOURNAL
卷 393, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124692

关键词

Iron sulfide; Stabilized nanoparticle; Reductive immobilization; Uranium removal; Radionuclide; Remobilization

资金

  1. Auburn University IGP program
  2. Guangdong Innovative and Entrepreneurial Research Team Program [2016ZT06N569]
  3. China Scholarship Council

向作者/读者索取更多资源

Carboxymethyl cellulose stabilized iron sulfide (CMC-FeS) nanoparticles have been shown promising for reductive immobilization of U(VI) in water and soil. This work aimed to fill some critical knowledge gaps on the effects of the stabilizer and water chemistry, reaction mechanisms, and long-term stability of stabilized uranium. The optimal CMC-to-FeS molar ratio was determined to be 0.0010. CMC-FeS performed effectively over pH 6.0-9.0, with the best removal being at pH 7.0 and 8.0. The retarded first-order model adequately interpreted the kinetic data, representing a mechanistically sounder model for heterogeneous reactants of decaying reactivity. The presence of Ca2+ (1 mM) or bicarbonate (1 mM) lowered the initial rate constant by a factor of 1.6 and 9.5, respectively, while 1 mM of Na+ showed negligible effect. Humic acid at 1.0 mg/L (as total organic carbon) doubled the removal rate, but inhibited the removal at elevated concentrations (>= 5.0 mg/L). Fourier transform infrared spectroscopy, X-ray diffractometer, X-ray photoelectron spectroscopy, and extraction studies indicated that reductive conversion of UO22+ to UO2(s) was the primary reaction mechanism, accounting for similar to 90% of U removal at pH 7.0. S2- and S-2(2-) were the primary electron sources, whereas sorbed and structural Fe(II) acted as supplementary electron donors. The immobilized U remained stable under anoxic conditions after 180 days of aging, while similar to 26% immobilized U was remobilized when exposed to air for 180 days. The long-term stability is attributed to the protective reduction potential of CMC-FeS, the formation of uraninite and associated structural resistance to oxidation, and the high affinity of FeS oxidation products toward U(VI).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据