4.7 Article

Covalent organic polymers derived carbon incorporated with cobalt oxides as a robust oxygen reduction reaction catalyst for fuel cells

期刊

CHEMICAL ENGINEERING JOURNAL
卷 390, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124581

关键词

Fuel cell; Oxygen reduction reaction; Covalent organic polymer; Cobalt oxide; Tolerance

资金

  1. National Natural Science Foundation for Young Scientists of China [51906168]
  2. National Natural Science Funds for Outstanding Young Scholars [51622602]

向作者/读者索取更多资源

Synthesizing high efficient oxygen reduction reaction catalyst is crucial for electrochemical technologies such as fuel cells. Herein, we proposed a covalent organic polymers derived carbon with cobalt oxides incorporation (Co/N-C-COPs) as ORR electrocatalysts for fuel cells. The Co/N-C-COPs was demonstrated to possess sufficient active sites and uniformly dispersed cobalt and nitrogen elements. The as-prepared Co/N-C-COPs at 800 degrees C showed the best ORR catalytic activity with a half-wave potential (-0.16 V vs. Ag/AgCl) and limiting current density (3.99 mA cm(-2)) similar to that of Pt/C (-0.15 V vs. Ag/AgCl and 4.05 mA cm(-2)) in alkaline media. When using the Co/N-C-COPs as cathode electrocatalyst, two types of home-made fuel cells (microbial fuel cell and direct formate fuel cell) delivered a comparable or even higher power output than that using Pt/C, due to its intriguing features including high catalytic activity, high poison tolerance and good durability. These results suggested that the as-proposed Co/N-C-COPs catalyst probably provide an alternative avenue for developing the cathode electrocatalysts for fuel cell applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据