4.7 Article

Peroxymonosulfate activated with waste battery-based Mn-Fe oxides for pollutant removal: Electron transfer mechanism, selective oxidation and LFER analysis

期刊

CHEMICAL ENGINEERING JOURNAL
卷 394, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124864

关键词

Electron transfer; Linear free energy relationship; Metal oxide; Peroxymonosulfate; Selective oxidation

资金

  1. National Natural Science Foundation of China [21806125]
  2. Postdoctoral Science Foundation of China [2016M602365]
  3. Fundamental Research Funds for Central Universities of China

向作者/读者索取更多资源

Mn2O3-Fe2O3 catalyst was fabricated from spent alkaline batteries and used for effective elimination of acetaminophen (APAP) by activating peroxymonosulfate (PMS). APAP removal at various initial pH, its degradation pathway and the stability of catalyst were investigated. The Mn(III) was inferred to be the primary active site and Fe(III) could improve the corrosion resistance through intermetallic interactions. Chemical quenching experiments, electron paramagnetic resonance (EPR) spectroscopy, solvent exchange, open circuit potential (OCP) and chronoamperometry tests imply that APAP is oxidized by electron transfer through highly reactive surface-adsorbed PMS. Fourier transform infrared (FTIR), in situ Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) spectra and ionic strength experiments further revealed the interaction between the catalyst and PMS. The Mn2O3-Fe2O3/PMS system exhibits selective oxidation for different contaminants, and linear free energy relationship (LFER) was employed to investigate the effect of structure and properties of pollutant on the reaction kinetics. Pollutant with peak potential (E-op) > 0.91 V, the steady-state OCP in the Mn2O3-Fe2O3/PMS system, is resistant to oxidation; while pollutant with E-op < 0.91 V is prone to be oxidized and there is a good correlation between apparent first-order rate constant (k(1)) and E-op. The research not only puts in-depth study into PMS activation through environment-friendly Mn-Fe oxides from spent alkaline batteries, but also provides some new insights for nonradical mechanism, selective oxidation and LFER study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据