4.7 Article

Valorization of animal manure: A case study of bioethanol production from horse manure

期刊

CHEMICAL ENGINEERING JOURNAL
卷 403, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.126345

关键词

Waste-to-energy; Biomass valorization; Livestock manure; Saccharification; Fermentation; Bioethanol

资金

  1. Rural Development Administration, Republic of Korea [PJ01388101]

向作者/读者索取更多资源

The study on converting horse manure into bioethanol using acid-alkaline pretreatment and enzyme hydrolysis methods showed that alkaline pretreatment had higher sugar recovery yield and higher bioethanol productivity compared to acid-enzyme hydrolysates. The presence of lower amounts of toxic compounds in alkaline-enzyme hydrolysates may contribute to the higher bioethanol productivities as compared to acid-enzyme hydrolysates.
Insecure supply chain of biomass has been regarded as one of the critical constraints for deteriorating the practical implementations of bioethanol (BE). To find a raw feedstock beyond lignocellulosic biomass, horse manure (HM) was converted into BE. To realize the grand premise, two pretreatment methods, acid-/alkaline-pretreatments using H2SO4/NaOH, were used for HM. To optimize acid-/alkaline-pretreatments, the surface methodology response with the Box-Behnken design was done. Under the optimized conditions, alkaline-pretreatment showed higher maximum sugar recovery yield (80%) than that from acid- pretreatment (71%), which offers that alkaline-pretreatment is suitable for BE synthesis from HM. The fermentability of acid/enzyme- and alkaline/enzyme-hydrolysates without a supplement of nitrogen source were tested using GRAS strain of yeast, Pichia stipitis. The results indicated that alkaline/enzyme- hydrolysates showed higher BE productivities (0.075 g L(-1)h(-1)) than those of acid/enzyme-hydrolysates (0.050 g L(-1)h(-1)). To elucidate the possible reasons of such higher BE productivities from the alkaline/enzyme- hydrolysates, the potential fermentative inhibitory compounds for Pichia stipitis such as acetic acid, furfural, and hydroxymethylfurfural were quantitatively analyzed. The results indicated that the presence of less amounts of toxic compounds from the alkaline/enzyme- hydrolysates may lead to such higher BE productivities as compared those present in acid/enzyme-hydrolysates. Also, all experimental results suggested a potential for saving production cost of BE using HM as the C/N sources without an additional nitrogen source supplement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据