4.7 Article

Pore-scale simulation of forced convection heat transfer under turbulent conditions in open-cell metal foam

期刊

CHEMICAL ENGINEERING JOURNAL
卷 389, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124427

关键词

Porous medium; Heat transfer; X-ray imaging; Turbulence regime; Open-cell foam

资金

  1. National Science and Technology Major Project [2017-III-0005-0029]
  2. National Key R&D Program of China [2017YFC0307300, 2018YFC0310006, 2017YFC0307504]
  3. National Natural Science Foundation of China [51806027, 51806028, 51890911]

向作者/读者索取更多资源

Previously, extensive efforts have been made in investigating heat transfer in open-cell metal foams in order to better understand and apply them in engineering applications. As a step in this direction, this study prepared five three-dimensional models of copper foam with various porosities (0.82, 0.87, and 0.90) and pores per inch (PPI) (10, 20, and 40) using X-ray computed tomography and several software applications to simulate forced convection heat transfer in a metal foam at a high velocity. The effects of porosity, PPI, and closed pores on the pressure drop and heat transfer properties were investigated. The results indicated that the pressure drop and heat transfer coefficient were more sensitive to porosity than PPI. However, the specific surface area of the metal foam significantly affected the volumetric heat transfer performance. Additionally, the area goodness factors (j/ f) were used to evaluate the comprehensive heat transfer performance (CHTP) of each sample. The value of j/f decreased rapidly in the velocity range of 0-20 m/s but slowly in the range of 20-70 m/s, and sample 40-0.87 exhibited a better CHTP. Moreover, the closed pores in the metal foam had a significant effect on the pressure drop, heat transfer properties, and CHTP due to the obstructions posed by the closed pores. Our work helps provide a better understanding for the application of metal foam in heat transfer enhancement at high velocities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据