4.7 Article

Ultraviolet-ozone modification on TiO2 surface to promote both efficiency and stability of low-temperature planar perovskite solar cells

期刊

CHEMICAL ENGINEERING JOURNAL
卷 393, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124731

关键词

Ultraviolet-ozone treatment; Low-temperature TiO2; Perovskite solar cells; Interface passivation; Photocatalysis

资金

  1. National Natural Science Foundation of China [51779065, 11804084]
  2. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) [2019DX11]

向作者/读者索取更多资源

As a classical electron transport layer, the high crystallinity TiO2 has been widely used in perovskite solar cells (PSCs), however, its high-temperature preparation process elevates the fabrication cost and limits its application. Here, we report an ultraviolet-ozone assisted strategy to modify low-temperature TiO2 interface for PSCs. In addition to the more appropriate work function and reinforced built-in potential, the lattice strain of perovskite films crystallized on modified TiO2 has also been released in some degree. Ultrafast transient absorption technique is employed to provide a deep insight into the carrier dynamics, revealing that less non-radiative recombination exists in the modified device. Interestingly, transient surface photovoltage results demonstrate that ultraviolet-ozone modification can efficiently suppress the decomposition of perovskite films under light illumination. Taking advantage of these facts, this device exhibits better efficiency and remarkable stability. This demonstrated low-temperature strategy is a promising way for fabricating low-cost, efficient and stable perovskite device.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据