4.7 Article

Controllable synthesis of tunable few-layered MoS2 chemically bonding with in situ conversion nitrogen-doped carbon for ultrafast reversible sodium and potassium storage

期刊

CHEMICAL ENGINEERING JOURNAL
卷 393, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2020.124703

关键词

Sodium-ion batteries; Potassium-ion batteries; MoS2; Chemically bonding; In situ conversion; Storage

资金

  1. National Natural Science Foundation of China
  2. NSFC [51772205, 51572192, 51772208, 51472179]
  3. General Program of Municipal Natural Science Foundation of Tianjin [17JCYBJC17000, 17JCYBJC22700]

向作者/读者索取更多资源

MoS2 with a special two-dimensional layered structure has attracted extensive interest as anode materials for sodium-ion batteries (SIBs) and potassium-ion batteries (KIBs) because of the large interlayer spaces (ca. 0.62 nm) enabling facile Na+/K+ intercalation. However, the application of MoS2 in SIBs and KIBs is impeded by poor cycling stability and low rate capability, which are associated with the instability of the electrode architecture and the sluggish transfer/diffusion kinetics of charge/ions. Here, a controllable and simple strategy is realised by tunable few-layered (2-4 layers) MoS2 chemically bonding (C-S) with in situ conversion nitrogen-doped carbon. Serving as a universal anode materials for SIBs and KIBs, the electrode delivers unprecedented rate capability and long cycle life. The few and expanded layers tightly chemically bonding with nitrogen-doped carbon not only shorten the Na+/K+ diffusion length, expose the more active site and reveal smaller energy barriers but also prevent the volume strain induced by the Na+/K+ intercalation. The sodium and potassium storage behavior is explained through studying the phase change of storage process and kinetics analysis that a high ratio of capacitive-energy-storage (92% and 84% at 1.0 mV s(-1) for SIBs and KIBs, respectively) is dominated especially when at a high rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据