4.7 Article

Carboxymethyl cellulose/metal (Fe, Cu and Ni) nanocomposites as non-precious inhibitors of C-steel corrosion in HCl solutions: synthesis, characterization, electrochemical and surface morphology studies

期刊

CELLULOSE
卷 27, 期 14, 页码 8039-8057

出版社

SPRINGER
DOI: 10.1007/s10570-020-03292-6

关键词

Carboxymethyl cellulose; Nanocomposites; In-situ deposition; Corrosion protection; Carbon steel corrosion

向作者/读者索取更多资源

This study was aimed at improving the stability and protection capacity of carboxymethyl cellulose (CMC) by combining copper, iron and nickel nanoparticles (Cu NP, Fe Np and Ni NP) produced in situ through the deposition of various metal oxide nanoparticles into a CMC matrix. The fabricated CMC as well as CMC/Fe NP, CMC/Cu NP and CMC/Ni NP nanocomposites were characterized by field emission-scanning electron microscope (FE-SEM), Fourier transform-infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy, transmission electron microscope, selected area diffraction pattern and X-ray diffraction techniques. The investigations of electrochemical methods, such as electrochemical impedance spectroscopy and potentiodynamic polarization (PDP), reinforced by surface morphology studies (FE-SEM, and FT-IR) were organized to explore the prepared materials' protection abilities on a carbon steel electrode in 2 N of HCl. The highest protection power for the CMC as well as CMC/Fe NP, CMC/Cu NP and CMC/Ni NP composites at 400 mg L-1 were 76.6, 94.9, 96.2 and 98.4%, respectively. FE-SEM/EDX and FT-IR examinations confirmed that the prepared nanocomposites could successfully block an aggressive attack with Cl- via chemical adsorption on the steel, in accordance with the adsorption model of Langmuir. PDP data indicated that the nanocomposites could deliver superior corrosion protection and exhibited mixed-type inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据