4.7 Article

Macro-/nanoporous Al-doped ZnO/cellulose composites based on tunable cellulose fi ber sizes for enhancing photocatalytic properties

期刊

CARBOHYDRATE POLYMERS
卷 250, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2020.116873

关键词

Al-doped ZnO; Macro-/nanoporous; Cellulose support; Photocatalytic properties

资金

  1. National Natural Science Foundation of China [31570576]
  2. Natural Science Foundation of Jiangsu Province [16KJA220005]
  3. China Postdoctoral Science Foundation [2020M671505]

向作者/读者索取更多资源

Porous Al-doped ZnO/cellulose (AZOC) composites were successfully fabricated via a chemical deposition method. The micro-/nano cellulose fibers (MNCF) with tunable sizes were prepared by grinding treatment, and used as substrates for synthesizing ZnO/MNCF and AZOC composites. With the increasing of grinding treatment times, the average fiber diameter of MNCF decreased, that of MNCF-10, MNCF-20 and MNCF-30 were 100 nm, 58 nm and 31 nm, which was observed by scanning electron microscopy (SEM). The fiber sizes of MNCF played an important role in the sizes of ZnO and Al-doped ZnO, also pore structures and photocatalytic properties of ZnO/MNCF and AZOC composites. The sizes of ZnO (or Al-doped ZnO) nanoparticles decreased with the de-creasing of MNCF diameter. The AZOC composite with average fiber diameter of 31 nm (under grinding treatment of 30 times) exhibited the highest porosity (94.6 %). The obtained ZnO/MNCF and AZOC composites were further analyzed using X-ray diffraction (XRD), Raman spectrometry, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (DRS). Due to the introduction of Al element dopant, the AZOC showed a much better photocatalytic efficiency (89.9 %) than pure ZnO powders (22.5 %) and ZnO/MNCF composites (53.3 %). Moreover, the AZOC composite can be recycled more than 10 times with negligible photocatalytic efficiency loss.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据