4.7 Article

LncRNA OIP5-AS1 promotes the malignancy of pancreatic ductal adenocarcinoma via regulating miR-429/FOXD1/ERK pathway

期刊

CANCER CELL INTERNATIONAL
卷 20, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12935-020-01366-w

关键词

OIP5-AS1; miR-429; FOXD1; Proliferation; ERK pathway; PDAC

类别

向作者/读者索取更多资源

Background Pancreatic ductal adenocarcinoma (PDAC), a subtype of pancreatic cancer, is a malignant tumor with unfavorable prognosis. Despite accumulating researches have made efforts on finding novel therapeutic methods for this disease, the underlying mechanism of long non-coding RNAs (lncRNAs) remains elusive. OIP5 antisense RNA 1 (OIP5-AS1) has been reported to play important role in the occurrence and development of multiple human cancers. This study was aimed at unveiling the regulatory role of OIP5-AS1 in PDAC. Methods RT-qPCR analysis revealed the OIP5-AS1 expression in PDAC tissues and adjacent normal ones. Kaplan-Meier method was applied to analyze the overall survival of patients with high or low level of OIP5-AS1. Gain- or loss-of function assays were performed to assess the effects of OIP5-AS1 knockdown on cell functions, including proliferation, migration and EMT process. Mechanism experiments, such as luciferase reporter and RNA pull-down assays proved the interaction between OIP5-AS1 and miR-429 as well as that between miR-429 and FOXD1. Results OIP5-AS1 was up-regulated in PDAC tissues and cell lines, and high level of OIP5-AS1 indicated poor prognosis in PDAC patients. OIP5-AS1 knockdown hindered cell proliferation, migration and epithelial-mesenchymal transition (EMT) process, while overexpression of OIP5-AS1 caused the opposite results. OIP5-AS1 activated ERK pathway through up-regulating forkhead box D1 (FOXD1) expression by sponging miR-429. Furthermore, OIP5-AS1 facilitated cell growth in vivo. Conclusion OIP5-AS1 exerted oncogenic function in PDAC cells through targeting miR-429/FOXD1/ERK pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据