4.7 Article

Integrating RNA-Seq with GWAS reveals novel insights into the molecular mechanism underpinning ketosis in cattle

期刊

BMC GENOMICS
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-020-06909-z

关键词

GWAS; Holstein; Ketosis; RNA-Seq; Phe-WAS; WGCNA

资金

  1. China Agricultural Research System [CARS-37]
  2. National Key Research and Development Project [2019YFE0106800]
  3. Beijing Dairy Industry Innovation Team Fund [BAIC06]

向作者/读者索取更多资源

Background Ketosis is a common metabolic disease during the transition period in dairy cattle, resulting in long-term economic loss to the dairy industry worldwide. While genetic selection of resistance to ketosis has been adopted by many countries, the genetic and biological basis underlying ketosis is poorly understood. Results We collected a total of 24 blood samples from 12 Holstein cows, including 4 healthy and 8 ketosis-diagnosed ones, before (2 weeks) and after (5 days) calving, respectively. We then generated RNA-Sequencing (RNA-Seq) data and seven blood biochemical indicators (bio-indicators) from leukocytes and plasma in each of these samples, respectively. By employing a weighted gene co-expression network analysis (WGCNA), we detected that 4 out of 16 gene-modules, which were significantly engaged in lipid metabolism and immune responses, were transcriptionally (FDR < 0.05) correlated with postpartum ketosis and several bio-indicators (e.g., high-density lipoprotein and low-density lipoprotein). By conducting genome-wide association signal (GWAS) enrichment analysis among six common health traits (ketosis, mastitis, displaced abomasum, metritis, hypocalcemia and livability), we found that 4 out of 16 modules were genetically (FDR < 0.05) associated with ketosis, among which three were correlated with postpartum ketosis based on WGCNA. We further identified five candidate genes for ketosis, includingGRINA, MAF1, MAFA, C14H8orf82andRECQL4.Our phenome-wide association analysis (Phe-WAS) demonstrated that human orthologues of these candidate genes were also significantly associated with many metabolic, endocrine, and immune traits in humans. For instance,MAFA, which is involved in insulin secretion, glucose response, and transcriptional regulation, showed a significantly higher association with metabolic and endocrine traits compared to other types of traits in humans. Conclusions In summary, our study provides novel insights into the molecular mechanism underlying ketosis in cattle, and highlights that an integrative analysis of omics data and cross-species mapping are promising for illustrating the genetic architecture underpinning complex traits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据