4.7 Article

Comparative chloroplast genome analysis of Artemisia (Asteraceae) in East Asia: insights into evolutionary divergence and phylogenomic implications

期刊

BMC GENOMICS
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12864-020-06812-7

关键词

Artemisia; Asteraceae; Plastome; Evolution; accD; ycf1; Marker

资金

  1. National Institute of Biological Resources [NIBR201922101]
  2. Next-Generation Biogreen21 program, Rural Development Administration, Korea [PJ013194]
  3. Myongji University

向作者/读者索取更多资源

BackgroundArtemisia in East Asia includes a number of economically important taxa that are widely used for food, medicinal, and ornamental purposes. The identification of taxa, however, has been hampered by insufficient diagnostic morphological characteristics and frequent natural hybridization. Development of novel DNA markers or barcodes with sufficient resolution to resolve taxonomic issues of Artemisia in East Asia is significant challenge.ResultsTo establish a molecular basis for taxonomic identification and comparative phylogenomic analysis of Artemisia, we newly determined 19 chloroplast genome (plastome) sequences of 18 Artemisia taxa in East Asia, de novo-assembled and annotated the plastomes of two taxa using publicly available Illumina reads, and compared them with 11 Artemisia plastomes reported previously. The plastomes of Artemisia were 150,858-151,318 base pairs (bp) in length and harbored 87 protein-coding genes, 37 transfer RNAs, and 8 ribosomal RNA genes in conserved order and orientation. Evolutionary analyses of whole plastomes and 80 non-redundant protein-coding genes revealed that the noncoding trnH-psbA spacer was highly variable in size and nucleotide sequence both between and within taxa, whereas the coding sequences of accD and ycf1 were under weak positive selection and relaxed selective constraints, respectively. Phylogenetic analysis of the whole plastomes based on maximum likelihood and Bayesian inference analyses yielded five groups of Artemisia plastomes clustered in the monophyletic subgenus Dracunculus and paraphyletic subgenus Artemisia, suggesting that the whole plastomes can be used as molecular markers to infer the chloroplast haplotypes of Artemisia taxa. Additionally, analysis of accD and ycf1 hotspots enabled the development of novel markers potentially applicable across the family Asteraceae with high discriminatory power.ConclusionsThe complete sequences of the Artemisia plastomes are sufficiently polymorphic to be used as super-barcodes for this genus. It will facilitate the development of new molecular markers and study of the phylogenomic relationships of Artemisia species in the family Asteraceae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据