4.4 Article

Genetic mapping of physiological traits associated with terminal stage drought tolerance in rice

期刊

BMC GENETICS
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12863-020-00883-x

关键词

Bulk-segregant analysis; Chlorophyll content; Proline content; Physiological traits; QTL mapping; Relative chlorophyll content; Reproductive stage drought tolerance; Rice

资金

  1. ICAR-National Rice Research Institute Cuttack, Odisha, India [1.6]

向作者/读者索取更多资源

Background Drought during reproductive stage is among the main abiotic stresses responsible for drastic reduction of grain yield in rainfed rice. The genetic mechanism of reproductive stage drought tolerance is very complex. Many physiological and morphological traits are associated with this stress tolerance. Robust molecular markers are required for detection and incorporation of these correlated physiological traits into different superior genetic backgrounds. Identification of gene(s)/QTLs controlling reproductive stage drought tolerance and its deployment in rainfed rice improvement programs are very important. Results QTLs linked to physiological traits under reproductive stage drought tolerance were detected by using 190 F(7)recombinant inbred lines (RIL) mapping population of CR 143-2-2 and Krishnahamsa. Wide variations were observed in the estimates of ten physiological traits studied under the drought stress. The RIL population was genotyped using the bulk- segregant analysis (BSA) approach. A total of 77 SSR polymorphic markers were obtained from the parental polymorphisms survey of 401 tested primers. QTL analysis using inclusive composite interval mapping detected a total of three QTLs for the physiological traits namely relative chlorophyll content (qRCC1.1), chlorophyll a (qCHLa1.1), and proline content (qPRO3.1) in the studied RIL population. The QTL,qPRO3.1is found to be a novel one showing LOD value of 13.93 and phenotypic variance (PVE) of 78.19%. The QTL was located within the marker interval of RM22-RM517 on chromosome 3. Another novel QTL,qRCC1.1 was mapped on chromosome 1 at a distance of 142.8 cM and found to control relative chlorophyll content during terminal drought stress. A third novel QTL was detected in the population that controlled chlorophyll a content (qCHLa1.1) under the terminal stress period. The QTL was located on chromosome 1 at a distance of 81.8 cM and showed 64.5% phenotypic variation. Conclusions The three novel QTLs,qRCC1.1,qCHLa1.1andqPRO3.1controlling relative chlorophyll content, chlorophyll a and proline content, respectively were identified in the mapping population derived from CR 143-2-2 and Krishnahamsa. These 3 QTLs will be useful for enhancement of terminal drought stress tolerance through marker-assisted breeding approach in rice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据